
Google: Adrian Horzyk
Adrian Horzyk

horzyk@agh.edu.pl

AGH University of Science and Technology
Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering

Department of Biocybernetics and Biomedical Engineering

1

https://www.google.com/search?q=Adrian+Horzyk
mailto:horzyk@pwsz.krosno.pl
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

2

http://home.agh.edu.pl/~horzyk/index-eng.php

Convolutional Neural Networks

Convolutional Neural Networks (CNNs)
are very popular today thanks to special
convolution operations based on
adaptive filtering, which work well,
especially with images:

.

33

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Benefits of using CNNs

Convolutional Neural Networks:

• Share parameters - so the same features may be recognized in any part of the image!

• Use sparse connections, so the convolutional layers are not connected in all-to-all
manner (densely/fully-connected), which saves a lot of parameters and allows to train
the network faster.

• Outputs depend directly only on some selected areas of the input images,
so the neurons can specialize in recognizing, but their position
in the convolutional layer defines the location where the features have been found.

Timeline of the development of Convolutional Neural Networks:

4

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php
https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d

Computer Vision

Computer vision (CV) is an interdisciplinary scientific field that deals with
how computers can perform various tasks on objects in digital images/videos and
automate tasks which the human visual system can do. CV plays a very important
role today and can be supported by convolutional neural networks (CNN) due to
their unique ability to recognize objects whenever they are located in the image:

Convolutional filters allow us to detect and filter out basic and secondary features
gradually in the subsequent layers of the network using adaptive filtering (dot products)

where weights of the adaptive filters are adjusted during the CNN training process:

The network adjusts the filters to recognize particular shapes and colors, which are
frequent and form patterns that may be adapted many times to various images.

5

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

6

http://home.agh.edu.pl/~horzyk/index-eng.php

Filters and Convolutions

Filters are commonly used in computer graphics,
and allow us to find edges and convolve images:

The example result of applying the vertical-line filter:

7

convolution

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Adaptive Filtering

In convolutional layers, we use adaptive filters, which are composed of non-
constant values that we call weights wi which are adapted during the training

process to represent frequent patterns of the filter size in the input images:

The output value is computed as a dot product of the input area and the filter
(an array of the adaptable weights) where the filter is adapted in the input image.

Convolutional weights are parameters of the model, so they are adjusted during
the training process to filter out the most frequent features found in the data

(training examples).

8

*
convolution

=

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

9

http://home.agh.edu.pl/~horzyk/index-eng.php

Stride 1

To adapt the filter to the whole image, we must move the filter over
the image with a given stride s that defines the number of fields (pixels)

we move in vertical and horizontal directions (it is a hyperparameter of the model):

For stride 1, we jump over one pixel as presented in the figure above.
10

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Stride 2

For stride 2, we jump over two pixels as presented in the figure below:

The chosen stride value is one of the hyperparameters of the model!

11

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Padding

When moving the filter (f x f) over the image (n x n) with a given stride,
we cannot move over the edges/border of the image, so we are forced to treat

the pixels on the borders in a different way (“Valid”) or add a 0-value border
outside the image to adapt filters on the boarders (“Same”):

• Valid Convolution (no padding): Output size is n x n * f x f = (n – f + 1) x (n – f + 1)

• Same Convolution (padding balances the filter size p = (f – 1)/2, then the output size
is the same as the one of the input image.

• The chosen way of convolution (“same” or “valid”) is one of the hyperparameters
of the model!

12

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Output Volume Size Calculation

The output array size can be computed for given hyperparameters:

• Input matrix (image) dimension n x n

• Filter size f x f

• Stride s

• Padding p

in the following way:
𝑛+2𝑝−𝑓

𝑠
+ 1 ×

𝑛+2𝑝−𝑓

𝑠
+ 1

Example for n = 7, f = 3, s = 2, p = 1:
7+2∙1−3

2
+ 1 ×

7+2∙1−3

2
+ 1 = 𝟒 × 𝟒

13

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Multiple Adaptive Filters on RGB Images

If the input image has 3 color channels, then the filters must also have
the depth equal to 3, so we always convolve over the whole volume.

14

R
G

B

R
G

B

R
G

B

Filter 1:

Filter 2:

Number of channels (filters

or depth of the conv. layer):

𝒏 + 𝟐𝒑 − 𝒇

𝒔
+ 𝟏 ×

𝒏 + 𝟐𝒑 − 𝒇

𝒔
+ 𝟏 × 𝒏𝒄

Output Volume Size =

𝒏𝒄 = 𝟐

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Convolutions and Convolutional Layer

What happens in the convolutional layer?

Input 𝒂 𝟎 is convolved by the convolutional filters 𝑾 𝟏 and adding bias 𝒃 𝟏 and

using activation function 𝒈 𝟏 output 𝒂 𝟏 is computed (here, two filters are used):

Number of parameters = (number of weights + bias) * number of filters = (3x3x3 + 1) * 2 = 28 * 2 = 56

15

+ 𝒃𝟏
[𝟏]

)

+ 𝒃𝟐
[𝟏]

)

𝒈[𝟏](

𝒈[𝟏](

𝑾 1 𝒛 1 𝒂 1

𝒂 0

𝒛 1 = 𝑾 1 ∙ 𝒂 0 + 𝒃 1 𝒂 1 = 𝒈 1 𝒛 1

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Convolutional Layer Notation

For convolutional layer 𝒍, we will use the following notations:

𝒇[𝒍] - filter size

𝒑[𝒍] - padding

𝒔 𝒍 - stride

𝒏𝑯
[𝒍]

- height (vertical dimension)

𝒏𝑾
[𝒍]

- width (horizontal dimension)

𝒏𝒄
[𝒍]

- number of channels or filters (depth of the layer)

For a given input:

𝒏𝑯
[𝒍−𝟏]

× 𝒏𝑾
[𝒍−𝟏]

× 𝒏𝒄
[𝒍−𝟏]

we get the following filter size: and weight size:

𝒇[𝒍] × 𝒇[𝒍] × 𝒏𝒄
[𝒍−𝟏]

𝒇[𝒍] × 𝒇[𝒍] × 𝒏𝒄
[𝒍−𝟏]

× 𝒏𝒄
[𝒍]

and the output:

𝒏𝑯
[𝒍]
× 𝒏𝑾

[𝒍]
× 𝒏𝒄

[𝒍]
=

𝒏𝑯
[𝒍−𝟏]

+ 𝟐 ∙ 𝒑[𝒍] − 𝒇[𝒍]

𝒔 𝒍
+ 𝟏 ×

𝒏𝑾
[𝒍−𝟏]

+ 𝟐 ∙ 𝒑[𝒍] − 𝒇[𝒍]

𝒔 𝒍
+ 𝟏 × 𝒏𝒄

[𝒍]

𝑨[𝒍] = 𝒎× 𝒏𝑯
[𝒍]
× 𝒏𝑾

[𝒍]
× 𝒏𝒄

[𝒍]

.
16

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Simple Convolutional Network

Let’s compute the sizes for this exemplar convolutional network:

𝒏𝑯
[𝟏]
× 𝒏𝑾

[𝟏]
× 𝒏𝒄

[𝟏]
=

𝟐𝟓 + 𝟐 ∙ 𝟎 − 𝟓

𝟐
+ 𝟏 ×

𝟐𝟓 + 𝟐 ∙ 𝟎 − 𝟓

𝟐
+ 𝟏 × 𝟏𝟔 = 𝟏𝟏 × 𝟏𝟏 × 𝟏𝟔

𝒏𝑯
[𝟐]
× 𝒏𝑾

[𝟐]
× 𝒏𝒄

[𝟐]
=

𝟏𝟏 + 𝟐 ∙ 𝟏 − 𝟑

𝟐
+ 𝟏 ×

𝟏𝟏 + 𝟐 ∙ 𝟏 − 𝟑

𝟐
+ 𝟏 × 𝟑𝟐 = 𝟔 × 𝟔 × 𝟑𝟐 = 𝟏𝟏𝟓𝟐 = 𝒏𝑯

[𝟑]

17

𝒂 1

𝒂 0

𝒂 2

𝒏𝒄
[𝟎]

= 𝟑 𝒏𝒄
[𝟏]

= 𝟏𝟔 𝒏𝒄
[𝟐]

= 𝟑𝟐

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

1 x 1 Convolutions

[Paper: Network In Network, Authors: Min Lin, Qiang Chen, Shuicheng Yan.
National University of Singapore, arXiv preprint, 2013]:

One-by-one convolutions (called also as network in network) can use various
features represented by the various convolutional filters with different
strengths expressed through the one-by-one-dimensional convolution filter:

This kind of convolution
can be used to shrink
the filter volume (depth):

18

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Pooling Layer

To sample the image down (downsampling), we often use pooling layers:

• Max-pooling chooses the maximum value from the selected region (stride = 2):

• Avg-pooling chooses the average value from the selected region (stride = 2):

Be careful about using max-pooling because it neglects details.

Max-pooling is the most often used in the convolutional networks (CNNs).

We usually do not use padding (padding = 0) for the pooling operations. 19

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Max-Pooling

Max-pooling layer for stride = 1, filter size = 3x3:

Notice that there are no parameters that can be adapted during the training process!

It is often used to downsample the high-dimensional images, so we use stride > 1.

Max-pooling and avg-pooling are computed separately for each channel.

In case of avg-pooling, we calculate averages instead of choosing max values. 20

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Pooling layers

Pooling layers are usually counted together with convolutional
layers, however sometimes they are computed separately,
so don’t get misled!

An example convolutional network with pooling layers:

21

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

22

http://home.agh.edu.pl/~horzyk/index-eng.php

CNN Structure

When designing a convolutional model, we can use various numbers and
combinations of layers, different numbers of neurons in layers and many more.

We usually present the structure of convolutional networks in the following way:

Let’s get inspired by the popular CNN structures developed for various tasks,
which we can reuse using transfer learning in the future

(because they were used and trained to many problems in the past),
and look how we can create our structures to our problems.

23

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

LeNet-5 (1998)

[LeCun et al., 1998. Gradient-based learning applied to document recognition]:

[https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d]
24

This net has 60K parameters.

LeNet-5 is one of the simplest architectures.

The average-pooling layer as we know it now was called
a sub-sampling layer and it had trainable weights,
which isn’t the current practice of designing CNNs nowadays.

The modern version of LeNet-5 uses SoftMax in the output layer.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

AlexNet (2012)

[Krizhevsky et al., 2012. ImageNet classification with deep convolutional neural networks]:

It was the first to implement Rectified Linear Units (ReLUs) as activation functions.
25

This net has 60M parameters.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

VGG-16 and VGG-19 (2014)

[Simonyan & Zisserman 2015. Very deep convolutional networks for large-scale image recognition]:

26

VGG16 This net has 138M
parameters.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

ResNets

[He at al., 2015, Deep residual networks for image recognition]:

ResNets are constructed from the stacked residual blocks that regularize the non-linear
processing using short-cut (identity, skip connection) connections:

𝒛[𝒍+𝟏] = 𝑾[𝒍+𝟏] ∙ 𝒂[𝒍] + 𝒃[𝒍+𝟏]

𝒂[𝒍+𝟏] = 𝑹𝒆𝑳𝑼 𝒛[𝒍+𝟏]

𝒛[𝒍+𝟐] = 𝑾[𝒍+𝟐] ∙ 𝒂[𝒍+𝟏] + 𝒃[𝒍+𝟐]

𝒂[𝒍+𝟐] = 𝑹𝒆𝑳𝑼 𝒛[𝒍+𝟐] + 𝒂[𝒍]

𝒂[𝒍] and 𝒛[𝒍+𝟐] must have
the same dimensions, so in ResNets,
we use the same convolutions:

27

Residual

Block

short-cut

𝒂[𝒍]

𝒂 𝒍+𝟏 𝑹𝒆𝑳𝑼

𝒂[𝒍+𝟐] 𝑹𝒆𝑳𝑼

𝒛[𝒍+𝟐]

𝒛[𝒍+𝟏]

𝑾[𝒍+𝟏]

𝑾[𝒍+𝟐]

𝒃[𝒍+𝟏]

𝒃[𝒍+𝟐]

ResNet
34 layers

ResNets allow us to

construct much

deeper architectures

because residual

blocks avoid

overfitting.

If we want to use different

dimensions of 𝒂[𝒍] and 𝒛[𝒍+𝟐],
we must use extra weight

matrix Ws to transform:

𝒂[𝒍+𝟐] = 𝑹𝒆𝑳𝑼 𝒛[𝒍+𝟐] +𝑾𝒔
𝒍+𝟐 ∙ 𝒂[𝒍]

𝒂[𝒍]

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Comparison of ResNet to PlainNet and VGG-19

[He at al., 2015, Deep residual networks for image recognition]:

ResNets are constructed from the stacked residual blocks
that regularize the non-linear processing

using short-cut (identity, skip connection) connections. 28

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

ResNet-50 (2015)

This net has 26M parameters!

It used skip connections the first time,
designed much deeper CNNs
(up to 152 layers) without compromise
with generalization, and was among
the first to use batch normalization.

Paper: Deep Residual Learning for Image Recognition, Authors: Kaiming He, Xiangyu Zhang, Shaoqing
Ren, Jian Sun. Microsoft

Published in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
29

https://arxiv.org/abs/1512.03385
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Inception Module

Inception modules allow to use various convolutions (filters) at the same time:

Using 1x1 convolutions, we can reduce the number or multiplications 10 times:

(28x28x16 x 1x1x192) + (28x28x16 x 1x1x192) ≈ 12.4M operations

[Szegedy et al. 2014. Going deeper with convolutions] 30

Computational cost of this convolution is

28x28x32 x 5x5x192 ≈ 120M operations.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Inception Networks (2014)

Building an inception network from inception modules:

1x1x96

1x1x96

28x28x192 28x28x32

28x28x32

28x28x128

28x28x64

31

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Inception-v1 (2014)

Paper: Going Deeper with Convolutions,

Authors: Christian Szegedy, Wei Liu, Yangqing Jia,

Pierre Sermanet, Scott Reed, Dragomir Anguelov,

Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich.

Google, University of Michigan, University of North Carolina

Published in: 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR)

This net has 5M
parameters.

It has parallel towers of
convolutions with different
filters, uses 1x1 convolutions,
adding nonlinearity, and two
auxiliary classifiers to provide
additional regularization.

32

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php
https://arxiv.org/abs/1409.4842

Inception-v3 (2015)

Paper: Rethinking the Inception Architecture for Computer Vision

Authors: Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,

Jonathon Shlens, Zbigniew Wojna. Google, University College

London, Published in: 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR)

This net has 24M
parameters.

It factorizes

n×n convolutions

into asymmetric

convolutions:

1×n and n×1

convolutions, 5×5

convolution to two

3×3 convolutions,

and replaces 7×7

to a series of 3×3

convolutions

33

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php
https://arxiv.org/abs/1512.00567

Inception-v4 (2016)

Paper: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

Authors: Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi. Google.

Published in: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence

This net has 43M
parameters.

It changed in Stem module,

added more Inception modules,

and chose Inception-v3 modules uniformly,

i.e. used the same number of filters for every module.

34

https://arxiv.org/abs/1602.07261
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Xception (2016)

Xception is an adaptation from Inception, where the Inception modules
have been replaced with depth-wise separable convolutions.

This net has 23M parameters.

Paper: Xception: Deep

Learning with Depthwise

Separable Convolutions

Authors: François Chollet.

Google.

Published in: 2017 IEEE

Conference on Computer

Vision and Pattern

Recognition (CVPR)

Cross-channel

correlations were

captured by 1×1

convolutions, and

spatial correlations

within each channel

were captured via

the regular 3×3 or

5×5 convolutions.
35

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php
https://arxiv.org/abs/1610.02357

Inception ResNet-v2 (2016)

Paper: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning,

Authors: Christian Szegedy, Sergey Loffe, Vincent Vanhoucke, Alex Alemi. Google.

Published in: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence

36

This net has 56M
parameters.

This solution:

• converts Inception modules to Residual Inception blocks.

• adds more Inception modules.

• adds a new type of Inception module (Inception-A) after the Stem module.

https://arxiv.org/abs/1602.07261
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

ResNeXt-50 (2017)

Paper: Aggregated Residual Transformations for Deep Neural Networks

Authors: Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He. University of
California San Diego, Facebook Research

Published in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

It scales up the number of parallel towers (“cardinality”) within a module.

37

This net has 25M parameters.

[https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d]

https://arxiv.org/abs/1611.05431
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

GitHub sources

It is not necessary to implement all these networks from scratch,
but you can use the original sources available on GitHub repositories:

1. Find the source at GitHub.

2. Copy the source at GitHub repository.

3. Clone it in your computer:
> git clone https://github.com/

4. Go to the repository, e.g.: cd deep-residual-networks

5. Go to the prototxt/more and look at the structure of the chosen network.

When implementing selected types of networks, we often use open-source
implementations available on GitHub and adapt them to our tasks.

In the same way, we copy implementations with trained parameters
when we want to use transfer learning, i.e. reusing the already trained models
to different tasks which use similar sets of features that can be reused.

38

https://github.com/
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

39

http://home.agh.edu.pl/~horzyk/index-eng.php

Now, let’s try to create and train a simple Convolutional Neural Network (CNN)
to tackle with a handwritten digit classification problem using MNIST dataset:

Each image in the MNIST dataset is 28x28 pixels and contains a centred,
grayscale digit form 0 to 9. Our goal is to classify these images to one of the ten
classes using ten output neurons of the CNN network.

40

https://victorzhou.com/blog/intro-to-cnns-part-1/
http://yann.lecun.com/exdb/mnist/
http://home.agh.edu.pl/~horzyk/index-eng.php

Let’s import libraries, frameworks, and setting of the parameters:

41

http://home.agh.edu.pl/~horzyk/index-eng.php

Set hyperparameters and the method for presenting test results:

http://home.agh.edu.pl/~horzyk/index-eng.php

Look at sample MNIST training examples (handwritten digits):

http://home.agh.edu.pl/~horzyk/index-eng.php

Load training data, changing the shapes of the matrices storing
training and testing data, transform the input data from [0, 255] to
[0.0, 1.0] range, and convert numerical class names into categories:

44

http://home.agh.edu.pl/~horzyk/index-eng.php

Build a neural network structure (a computational model):

http://home.agh.edu.pl/~horzyk/index-eng.php

Compile the model using optimizer, augment data using generator, and train it:

http://home.agh.edu.pl/~horzyk/index-eng.php

Evaluate the trained model and plot how it convergences on charts:

47

http://home.agh.edu.pl/~horzyk/index-eng.php

Model evaluation, convergence drawing and error charts:

Here is the presentation of only 3 learning epochs!

We usually train such networks for several dozen epochs,

getting better results (accuracy) and smaller errors!

Why results on test data are better than on train data?
Mini-batch mode and regularization mechanisms, such as Dropout and L1/L2 weight regularization,

are turned off at the testing time, so the model does not change as during training time.

That is why the train error is always bigger, which can appear weird

in view of classic machine learning models.

http://home.agh.edu.pl/~horzyk/index-eng.php

Generate summaries of the training and show a confusion matrix:

49

http://home.agh.edu.pl/~horzyk/index-eng.php

Confusion (error) matrix in the form of a heat map for the text data:

50

http://home.agh.edu.pl/~horzyk/index-eng.php

Count and filter out incorrectly classified test examples to show them:

51

http://home.agh.edu.pl/~horzyk/index-eng.php

247 out of 10,000
incorrectly classified
test patterns:

One might wonder
why the network
had difficulty in
classifying them?

Of course, such
a network can
be taught further
to achieve
a smaller error!

This network has
been taught only
for 3 epochs!

http://home.agh.edu.pl/~horzyk/index-eng.php

Now, let’s try to train the network for 50 epochs:

http://home.agh.edu.pl/~horzyk/index-eng.php

Graphs of learning convergence (accuracy) and error minimization (loss):

Why results on test data are better than on train data?
Mini-batch mode and regularization mechanisms, such as Dropout and L1/L2 weight regularization,

are turned off at the testing time, so the model does not change as during training time.

That is why the train error is always bigger, which can appear weird

in view of classic machine learning models.

http://home.agh.edu.pl/~horzyk/index-eng.php

The confusion matrix has also improved: more examples have migrated
towards the diagonal (correct classifications) from the other regions:

55

http://home.agh.edu.pl/~horzyk/index-eng.php

The number and the accuracy of correctly classified examples for
all individual classes increase have risen:

However, we can see that the process of network training is not over yet
and should be continued for several dozen epochs.

56

http://home.agh.edu.pl/~horzyk/index-eng.php

The number of misclassified examples after 50 epochs compared to
3 epochs has dropped from 247 to 37 out of 10,000 test examples,
resulting in an error of 0.37%. Here are all misclassified examples:

57

http://home.agh.edu.pl/~horzyk/index-eng.php

58

http://home.agh.edu.pl/~horzyk/index-eng.php

Classification of images 32 x 32 pixels to 10 classes (3 learning epochs):

http://home.agh.edu.pl/~horzyk/index-eng.php

60

http://home.agh.edu.pl/~horzyk/index-eng.php

Compilation, optimization , data augmentation (generation) and training:

http://home.agh.edu.pl/~horzyk/index-eng.php

Results of training after three training epochs:

http://home.agh.edu.pl/~horzyk/index-eng.php

Confusion (error) matrix
after three training
epochs:

We usually train such
networks for minimum
a few dozens of epochs
to get satisfying results.

63

http://home.agh.edu.pl/~horzyk/index-eng.php

Let’s train the network longer (50 epochs, a few hours) and as you can see the
error (val_loss) systematically decreases, and the accuracy (val_acc) increases:

http://home.agh.edu.pl/~horzyk/index-eng.php

The charts of accuracy and loss show the right convergence process:

Why results on test data are better than on train data?
Mini-batch mode and regularization mechanisms, such as Dropout and L1/L2 weight regularization,

are turned off at the testing time, so the model does not change as during training time.

That is why the train error is always bigger, which can appear weird

in view of classic machine learning models.

http://home.agh.edu.pl/~horzyk/index-eng.php

The confusion matrix has also improved: more examples have migrated
towards the diagonal (correct classifications) from the other regions:

http://home.agh.edu.pl/~horzyk/index-eng.php

The number and the accuracy of correctly classified examples
for all individual classes have increased significantly:

However, we can see that the process of network training is not over yet
and should be continued for several dozen epochs.

67

http://home.agh.edu.pl/~horzyk/index-eng.php

Examples of misclassifications after 50 training epochs for a test set
of 10,000 examples: The number of misclassifications decreased
from 7929 after 3 epochs to 1615 after 50 epochs.

We can see that in the case of this training set, the convolution
network should be taught much longer (16.15% of incorrect
classifications remain) or the structure or the hyperparameters of
the model should be changed.

68

http://home.agh.edu.pl/~horzyk/index-eng.php

Samples of misclassified examples:

0

1

2

3

4

5

6

7

8

9

69

http://home.agh.edu.pl/~horzyk/index-eng.php

Samples of misclassified examples:

0

1

2

3

4

5

6

7

8

9

70

http://home.agh.edu.pl/~horzyk/index-eng.php

Let’s start with powerful computations!

✓ Questions?

✓ Remarks?

✓ Wishes?

http://home.agh.edu.pl/~horzyk/index-eng.php

http://home.agh.edu.pl/~horzyk/lectures/ahdydci.php
file:///C:/Users/Adrian/Downloads/bmm615.pdf
file:///C:/Users/Adrian/Downloads/bmm615.pdf
file:///C:/Users/Adrian/Downloads/bmm615.pdf
https://page.mi.fu-berlin.de/rojas/neural/neuron.pdf
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1311.2901
http://home.agh.edu.pl/~horzyk/lectures/ahdydci.php
file:///C:/Users/Adrian/Downloads/bmm615.pdf
https://page.mi.fu-berlin.de/rojas/neural/neuron.pdf
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
https://arxiv.org/abs/1311.2901
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

https://victorzhou.com/blog/keras-cnn-tutorial/
https://github.com/keras-team/keras/tree/master/examples
https://github.com/keras-team/keras/tree/master/examples
https://medium.com/@margaretmz/anaconda-jupyter-notebook-tensorflow-and-keras-b91f381405f8
https://medium.com/@margaretmz/anaconda-jupyter-notebook-tensorflow-and-keras-b91f381405f8
https://blog.tensorflow.org/2019/09/tensorflow-20-is-now-available.html
https://blog.tensorflow.org/2019/09/tensorflow-20-is-now-available.html
http://coursera.org/specializations/tensorflow-in-practice
https://udacity.com/course/intro-to-tensorflow-for-deep-learning
https://udacity.com/course/intro-to-tensorflow-for-deep-learning
https://www.youtube.com/watch?v=XNKeayZW4dY
https://towardsdatascience.com/formatting-tips-for-correlation-heatmaps-in-seaborn-4478ef15d87f
https://towardsdatascience.com/formatting-tips-for-correlation-heatmaps-in-seaborn-4478ef15d87f
https://medium.com/datadriveninvestor/image-processing-for-mnist-using-keras-f9a1021f6ef0
https://medium.com/datadriveninvestor/image-processing-for-mnist-using-keras-f9a1021f6ef0
https://victorzhou.com/blog/keras-cnn-tutorial/
https://github.com/keras-team/keras/tree/master/examples
https://medium.com/@margaretmz/anaconda-jupyter-notebook-tensorflow-and-keras-b91f381405f8
https://blog.tensorflow.org/2019/09/tensorflow-20-is-now-available.html
http://coursera.org/specializations/tensorflow-in-practice
https://udacity.com/course/intro-to-tensorflow-for-deep-learning
https://www.youtube.com/watch?v=XNKeayZW4dY
https://towardsdatascience.com/formatting-tips-for-correlation-heatmaps-in-seaborn-4478ef15d87f
https://medium.com/datadriveninvestor/image-processing-for-mnist-using-keras-f9a1021f6ef0
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

https://www.ibm.com/developerworks/library/ba-data-becomes-knowledge-1/index.html
https://www.ibm.com/developerworks/library/ba-data-becomes-knowledge-1/index.html
https://developer.nvidia.com/discover/convolutional-neural-network
https://developer.nvidia.com/discover/convolutional-neural-network
https://jupyter.org/
https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d
https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d
https://www.ibm.com/developerworks/library/ba-data-becomes-knowledge-1/index.html
https://developer.nvidia.com/discover/convolutional-neural-network
https://jupyter.org/
https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

